
Harmony in Duality
30th International Conference on Types for Proofs and Programs — TYPES 2024

Henning Basold (Leiden University) Herman Geuvers (Radboud University Nijmegen)
11 June 2024

Henning Basold, Herman Geuvers 1 / 16

Outline

What Is the Dual of Equality?

Some Rules

Harmony at Last?

Henning Basold, Herman Geuvers 2 / 16

What Is the Dual of Equality?

Henning Basold, Herman Geuvers 3 / 16

Dualising the usual equality gives …

data EqA : A → A → Ty where
refl : (x : A) → ⊤ → Eq x x

codata InEqA : A → A → Ty where
irefl : (x : A) → InEq x x → ⊥

Intuition
1. refl constructs term of Eq applied to twice the same argument
2. irefl observes only terms when InEq is applied twice to the same argument

Dualising inductive equality gives classical inequality

Henning Basold, Herman Geuvers 4 / 16

Dualising the usual equality gives …

data EqA : A → A → Ty where
refl : (x : A) → ⊤ → Eq x x

codata InEqA : A → A → Ty where
irefl : (x : A) → InEq x x → ⊥

Intuition
1. refl constructs term of Eq applied to twice the same argument
2. irefl observes only terms when InEq is applied twice to the same argument

Dualising inductive equality gives classical inequality

Henning Basold, Herman Geuvers 4 / 16

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types

▶ In cubical version of OTT via interval manipulation and induction on types
▶ Here: avoid intervals but

1. define lifting of types to relations on terms

2. treat type equality via parameterised types and application to equality
3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types
▶ In cubical version of OTT via interval manipulation and induction on types

▶ Here: avoid intervals but
1. define lifting of types to relations on terms

2. treat type equality via parameterised types and application to equality
3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types
▶ In cubical version of OTT via interval manipulation and induction on types
▶ Here: avoid intervals but

1. define lifting of types to relations on terms

2. treat type equality via parameterised types and application to equality
3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types
▶ In cubical version of OTT via interval manipulation and induction on types
▶ Here: avoid intervals but

1. define lifting of types to relations on terms

2. treat type equality via parameterised types and application to equality
3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types
▶ In cubical version of OTT via interval manipulation and induction on types
▶ Here: avoid intervals but

1. define lifting of types to relations on terms
2. treat type equality via parameterised types and application to equality

3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

Let us look somewhere else: Observational Type Theory

Rules for equality elimination via coercion and coherence1

Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ s[Q⟩ : B
Γ ⊢ Q : A ∼ B Γ ⊢ s : A

Γ ⊢ {s ||Q} : s ∼ s[Q⟩

Proving type equality
▶ In OTT via definition of value equality and computation by induction on types
▶ In cubical version of OTT via interval manipulation and induction on types
▶ Here: avoid intervals but

1. define lifting of types to relations on terms
2. treat type equality via parameterised types and application to equality
3. only equality proof principle is bisimilarity (coinductive!)

1Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equality, Now!” In: Proc. of PLPV ’07.
Workshop on Programming Languages Meets Program Verification. ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6. doi:
10.1145/1292597.1292608.

Henning Basold, Herman Geuvers 5 / 16

https://doi.org/10.1145/1292597.1292608

An Opportunity

Dualising coinductive equality
▶ Geuvers and Jacob have shown that apartness is the dual of bisimilarity2

▶ However, that work uses negation
▶ Traditional constructivists avoid that like the plague3

Reconciliation follows the same pattern as equality

1. define lifting of types to relations on terms
2. treat type apartness via parameterised types and application to equality
3. only apartness proof principle is inductive

2Herman Geuvers and Bart Jacobs. “Relating Apartness and Bisimulation”. In: Logical Methods in Computer Science
Volume 17, Issue 3 (July 30, 2021). issn: 1860-5974. doi: 10.46298/lmcs-17(3:15)2021.

3Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduction, Volume II. Studies in Logic and
the Foundations of Mathematics 123. North-Holland, 1988. 384 pp. isbn: 0-444-70358-6.

Henning Basold, Herman Geuvers 6 / 16

https://doi.org/10.46298/lmcs-17(3:15)2021

Some Rules

Henning Basold, Herman Geuvers 7 / 16

Judgements

Well-formed type judgement
∆ | Γ1 ⊢ A : Γ2 _ Ty — A is a well-formed type with
▶ type variable context ∆

▶ object variable context Γ1

▶ parameter context Γ2

Well-formed term judgement
Γ1 ⊢ t : Γ2 _ A — t is well-formed term of type A with
▶ object variable context Γ1

▶ parameter context Γ2

Henning Basold, Herman Geuvers 8 / 16

Type formation
Parameter application and abstraction: simply typed λ-calculus for explicit substitutions

Γ1 ⊢ A : (x : B,Γ2) _ Ty Γ1 ⊢ s : B

Γ1 ⊢ A @ s : Γ2[s/x] _ Ty
Γ1, x : B ⊢ A : Γ2 _ Ty

Γ1 ⊢ (x). A : (x : B,Γ2) _ Ty

Recursive types

∀1 ≤ k ≤
∣∣∣−→A ∣∣∣. ∆, X : Γ _ Ty | Γ ⊢ Ak : Ty ϱ ∈ {µ, ν}

(FP-Ty-ϱ)
∆ | · ⊢ ϱ(X : Γ _ Ty ;

−→
A) : Γ _ Ty

Expressiveness
▶ Sigma (inductive), Pi (coinductive) and usual recursive types can be expressed4

▶ The type Eq is not definable in as inductive type because constructors don’t allow substitutions

4Henning Basold and Herman Geuvers. “Type Theory Based on Dependent Inductive and Coinductive Types”. In:
Proceedings of LICS ’16. Logic In Computer Science. ACM, 2016, pp. 327–336. doi: 10.1145/2933575.2934514. arXiv:
1605.02206; Henning Basold. “Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic”. PhD thesis. Radboud
University, 2018. url: https://hdl.handle.net/2066/190323.

Henning Basold, Herman Geuvers 9 / 16

https://doi.org/10.1145/2933575.2934514
https://arxiv.org/abs/1605.02206
https://hdl.handle.net/2066/190323

Type formation
Parameter application and abstraction: simply typed λ-calculus for explicit substitutions

Γ1 ⊢ A : (x : B,Γ2) _ Ty Γ1 ⊢ s : B

Γ1 ⊢ A @ s : Γ2[s/x] _ Ty
Γ1, x : B ⊢ A : Γ2 _ Ty

Γ1 ⊢ (x). A : (x : B,Γ2) _ Ty

Recursive types

∀1 ≤ k ≤
∣∣∣−→A ∣∣∣. ∆, X : Γ _ Ty | Γ ⊢ Ak : Ty ϱ ∈ {µ, ν}

(FP-Ty-ϱ)
∆ | · ⊢ ϱ(X : Γ _ Ty ;

−→
A) : Γ _ Ty

Expressiveness
▶ Sigma (inductive), Pi (coinductive) and usual recursive types can be expressed4

▶ The type Eq is not definable in as inductive type because constructors don’t allow substitutions

4Henning Basold and Herman Geuvers. “Type Theory Based on Dependent Inductive and Coinductive Types”. In:
Proceedings of LICS ’16. Logic In Computer Science. ACM, 2016, pp. 327–336. doi: 10.1145/2933575.2934514. arXiv:
1605.02206; Henning Basold. “Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic”. PhD thesis. Radboud
University, 2018. url: https://hdl.handle.net/2066/190323.

Henning Basold, Herman Geuvers 9 / 16

https://doi.org/10.1145/2933575.2934514
https://arxiv.org/abs/1605.02206
https://hdl.handle.net/2066/190323

Type formation
Parameter application and abstraction: simply typed λ-calculus for explicit substitutions

Γ1 ⊢ A : (x : B,Γ2) _ Ty Γ1 ⊢ s : B

Γ1 ⊢ A @ s : Γ2[s/x] _ Ty
Γ1, x : B ⊢ A : Γ2 _ Ty

Γ1 ⊢ (x). A : (x : B,Γ2) _ Ty

Recursive types

∀1 ≤ k ≤
∣∣∣−→A ∣∣∣. ∆, X : Γ _ Ty | Γ ⊢ Ak : Ty ϱ ∈ {µ, ν}

(FP-Ty-ϱ)
∆ | · ⊢ ϱ(X : Γ _ Ty ;

−→
A) : Γ _ Ty

Expressiveness
▶ Sigma (inductive), Pi (coinductive) and usual recursive types can be expressed4

▶ The type Eq is not definable in as inductive type because constructors don’t allow substitutions
4Henning Basold and Herman Geuvers. “Type Theory Based on Dependent Inductive and Coinductive Types”. In:

Proceedings of LICS ’16. Logic In Computer Science. ACM, 2016, pp. 327–336. doi: 10.1145/2933575.2934514. arXiv:
1605.02206; Henning Basold. “Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic”. PhD thesis. Radboud
University, 2018. url: https://hdl.handle.net/2066/190323.

Henning Basold, Herman Geuvers 9 / 16

https://doi.org/10.1145/2933575.2934514
https://arxiv.org/abs/1605.02206
https://hdl.handle.net/2066/190323

Type Relations

Type relation judgement
Γ ⊢ R TyRel — R is a well-formed type relation in context Γ

We have heterogeneous and type equality as in OTT …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s ∼ t : Ty
Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty

Γ ⊢ A ∼ B TyRel

… heterogeneous apartness …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s # t : Ty

… and one could use type apartness

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty
Γ ⊢ A # B TyRel

Henning Basold, Herman Geuvers 10 / 16

Type Relations

Type relation judgement
Γ ⊢ R TyRel — R is a well-formed type relation in context Γ

We have heterogeneous and type equality as in OTT …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s ∼ t : Ty
Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty

Γ ⊢ A ∼ B TyRel

… heterogeneous apartness …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s # t : Ty

… and one could use type apartness

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty
Γ ⊢ A # B TyRel

Henning Basold, Herman Geuvers 10 / 16

Type Relations

Type relation judgement
Γ ⊢ R TyRel — R is a well-formed type relation in context Γ

We have heterogeneous and type equality as in OTT …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s ∼ t : Ty
Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty

Γ ⊢ A ∼ B TyRel

… heterogeneous apartness …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s # t : Ty

… and one could use type apartness

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty
Γ ⊢ A # B TyRel

Henning Basold, Herman Geuvers 10 / 16

Type Relations

Type relation judgement
Γ ⊢ R TyRel — R is a well-formed type relation in context Γ

We have heterogeneous and type equality as in OTT …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s ∼ t : Ty
Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty

Γ ⊢ A ∼ B TyRel

… heterogeneous apartness …

Γ ⊢ A,B : Ty Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ s # t : Ty

… and one could use type apartness

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty
Γ ⊢ A # B TyRel

Henning Basold, Herman Geuvers 10 / 16

How do we prove type relations?

Following our category theoretical nose

1. Define equality and apartness liftings of types to relations by induction on types
2. Use to devise proof principles for relations on terms using these liftings
3. Push term relation to type level

Equality lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♭(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Apartness lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♯(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Henning Basold, Herman Geuvers 11 / 16

How do we prove type relations?

Following our category theoretical nose

1. Define equality and apartness liftings of types to relations by induction on types
2. Use to devise proof principles for relations on terms using these liftings
3. Push term relation to type level

Equality lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♭(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Apartness lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♯(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Henning Basold, Herman Geuvers 11 / 16

How do we prove type relations?

Following our category theoretical nose

1. Define equality and apartness liftings of types to relations by induction on types
2. Use to devise proof principles for relations on terms using these liftings
3. Push term relation to type level

Equality lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♭(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Apartness lifting

X : Γ _ Ty | Γ ⊢ A : Ty Γ ⊢ B : Ty Γ ⊢ R : (Γ, x : B, y : B) _ Ty

⊢ A♯(R) : (Γ, x : A[B/X], y : A[B/X]) _ Ty

Henning Basold, Herman Geuvers 11 / 16

Back to equality

Equality is coinductive

Γ1 ⊢ R : (x : ν, y : ν) _ Ty
xk : ν, yk : ν, zk : R @ xk @ yk ⊢ gk : A♭

k(R)[ξk @ xk/x, ξk @ yk/y]

Γ ⊢ coind
−−−−−−−−−−→
(xk, yk, zk). gk : (x : ν, y : ν, z : R @ x @ y) _ x ∼ y

Type equality via application – no recursive elimination

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty A ≡ B

Γ ⊢ Refl : A ∼ B

Γ1 ⊢ A : (x : B,Γ2) _ Ty Γ1 ⊢ s, t : B Γ1 ⊢ p : s ∼ t

Γ1 ⊢ A @ p : A @ s ∼ A @ t

Henning Basold, Herman Geuvers 12 / 16

Back to equality

Equality is coinductive

Γ1 ⊢ R : (x : ν, y : ν) _ Ty
xk : ν, yk : ν, zk : R @ xk @ yk ⊢ gk : A♭

k(R)[ξk @ xk/x, ξk @ yk/y]

Γ ⊢ coind
−−−−−−−−−−→
(xk, yk, zk). gk : (x : ν, y : ν, z : R @ x @ y) _ x ∼ y

Type equality via application – no recursive elimination

Γ1 ⊢ A : Γ2 _ Ty Γ1 ⊢ B : Γ2 _ Ty A ≡ B

Γ ⊢ Refl : A ∼ B

Γ1 ⊢ A : (x : B,Γ2) _ Ty Γ1 ⊢ s, t : B Γ1 ⊢ p : s ∼ t

Γ1 ⊢ A @ p : A @ s ∼ A @ t

Henning Basold, Herman Geuvers 12 / 16

Using apartness

Apartness elimination

Γ ⊢ A : Ty Γ ⊢ B : Ty s ≡ t Γ ⊢ p : s # t Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

Γ ⊢ P : (x : A) _ Ty Γ ⊢ s, t : A Γ, y : s # t ⊢ p1 : C Γ, z : P @ t ⊢ p2 : C Γ ⊢ q : P @ s

Γ ⊢ extr(y.p1, z.p2) q : C

Intuition
1. Apartness contradicts equality
2. Every predicate is strongly extensional5: P s → s # t ∨ P t

5Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduction, Volume II. Studies in Logic and
the Foundations of Mathematics 123. North-Holland, 1988. 384 pp. isbn: 0-444-70358-6.

Henning Basold, Herman Geuvers 13 / 16

Using apartness

Apartness elimination

Γ ⊢ A : Ty Γ ⊢ B : Ty s ≡ t Γ ⊢ p : s # t Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

Γ ⊢ P : (x : A) _ Ty Γ ⊢ s, t : A Γ, y : s # t ⊢ p1 : C Γ, z : P @ t ⊢ p2 : C Γ ⊢ q : P @ s

Γ ⊢ extr(y.p1, z.p2) q : C

Intuition
1. Apartness contradicts equality
2. Every predicate is strongly extensional5: P s → s # t ∨ P t

5Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Introduction, Volume II. Studies in Logic and
the Foundations of Mathematics 123. North-Holland, 1988. 384 pp. isbn: 0-444-70358-6.

Henning Basold, Herman Geuvers 13 / 16

What can we prove?

1. Transitivity and symmetry of equality
2. Symmetry and separation (if s # t then s # r or r # t)
3. Function and coinductive element extensionality with respect to ∼
4. Aparteness of coinductive elements as inductive witnesses

Example (Strong extensionality of functions)
Given

f : A → B and s, t : A and p : f s # f t

Set

Q = (x). f x # f t : (x : A) _ Ty =⇒ Q @ s ≡ f s # f t

=⇒ Q @ t ≡ f t # f t

Γ, y : s # t ⊢ y : s # t Γ, z : Q @ t ⊢ #elim z : s # t Γ ⊢ p : Q @ s

Γ ⊢ extr(y.y, z.p2) p : s # t

Henning Basold, Herman Geuvers 14 / 16

Harmony at Last?

Henning Basold, Herman Geuvers 15 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms

▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?

▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd

▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?

▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

Some harmony and some cognitive dissonance

▶ The duality works well on terms
▶ Not so nice on types: how to make the elimination of type equality and apartness proper dual?
▶ The heterogeneous equality and apartness are odd
▶ Type apartness as dual to type equality useful?

Γ ⊢ A : Ty Γ ⊢ B : Ty A ≡ B Γ ⊢ Q : A # B Γ ⊢ C : Ty
Γ ⊢ #elimQ : C

▶ Monotonicity witnesses for relation liftings (extending Ralph Matthes work from recursors)?
▶ More generally: relations via double categorical language?

Thank You!

Henning Basold, Herman Geuvers 16 / 16

	What Is the Dual of Equality?
	Some Rules
	Harmony at Last?

